A representation theorem for (q-)holonomic sequences

نویسندگان

  • Tomer Kotek
  • Johann A. Makowsky
چکیده

Chomsky and Schützenberger showed in 1963 that the sequence dL(n), which counts the number of words of a given length n in a regular language L, satisfies a linear recurrence relation with constant coefficients for n, i.e., it is C-finite. It follows that every sequence s(n) which satisfies a linear recurrence relation with constant coefficients can be represented as dL1 (n)− dL2 (n) for two regular languages. We view this as a representation theorem for C-finite sequences. Holonomic or P-recursive sequences are sequences which satisfy a linear recurrence relation with polynomial coefficients. q-holonomic sequences are the q-analog of holonomic sequences. In this paper we prove representation theorems of holonomic and q-holonomic sequences based on position specific weights on words, and for holonomic sequences, without using weights, based on sparse regular languages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Representation Theorem for Holonomic Sequences Based on Counting Lattice Paths

Using a theorem of N. Chomsky and M. Schützenberger one can characterize sequences of integers which satisfy linear recurrence relations with constant coefficients (C-finite sequences) as differences of two sequences counting words in regular languages. We prove an analog for P-recursive (holonomic) sequences in terms of counting certain lattice paths.

متن کامل

The Degree of a q-Holonomic Sequence is a Quadratic Quasi-Polynomial

A sequence of rational functions in a variable q is q-holonomic if it satisfies a linear recursion with coefficients polynomials in q and qn. We prove that the degree of a q-holonomic sequence is eventually a quadratic quasi-polynomial, and that the leading term satisfies a linear recursion relation with constant coefficients. Our proof uses differential Galois theory (adapting proofs regarding...

متن کامل

A MATHEMATICA PACKAGE FOR q-HOLONOMIC SEQUENCES AND POWER SERIES

We describe a Mathematica package for dealing with q-holonomic sequences and power series. The package is intended as a q-analogue of the Maple package gfun and the Mathematica package GeneratingFunctions. It provides commands for addition, multiplication, and substitution of these objects, for converting between various representations (q-differential equations, q-recurrence equations, q-shift...

متن کامل

Asymptotics of Quantum Spin Networks at a Fixed Root of Unity

A classical spin network consists of a ribbon graph (i.e., an abstract graph with a cyclic ordering of the vertices around each edge) and an admissible coloring of its edges by natural numbers. The standard evaluation of a spin network is an integer number. In a previous paper, we proved an existence theorem for the asymptotics of the standard evaluation of an arbitrary classical spin network w...

متن کامل

Algorithmic determination of q-power series for q-holonomic functions

In [Koepf (1992)] it was shown how for a given holonomic function a representation as a formal power series of hypergeometric type can be determined algorithmically. This algorithm – that we call FPS algorithm (Formal Power Series) – combines three steps to obtain the desired representation. The authors implemented this algorithm in the computer algebra system Maple as c̀onvert/FormalPowerSeries...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Syst. Sci.

دوره 80  شماره 

صفحات  -

تاریخ انتشار 2014